资源类型

期刊论文 336

年份

2023 35

2022 27

2021 28

2020 23

2019 32

2018 26

2017 12

2016 16

2015 23

2014 22

2013 19

2012 10

2011 8

2010 11

2009 12

2008 9

2007 15

2005 1

2003 1

2002 1

展开 ︾

关键词

吸附 2

7815 1

Tetrasphaera 1

H2S 1

MOF基催化剂 1

P4 1

PH3 1

PM2.5脱除 1

T试剂 1

主–客体络合 1

亚铁氰化铜 1

催化剂 1

催化氧化 1

元分析 1

全程氨氧化细菌 1

分子识别纳米凝胶 1

分离 1

功能胶囊 1

印染废水 1

展开 ︾

检索范围:

排序: 展示方式:

Development of barium@alginate adsorbents for sulfate removal in lithium refining

Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 198-207 doi: 10.1007/s11705-020-1968-z

摘要: The demand for lithium has been steadily growing in recent years due to the boom of electric cars. High purity lithium is commonly used in the manufacture of battery grade lithium electrolyte. Sulfate residuals originating from acid leaching of lithium ores must be limited to below 20 mg·L during refining. There are methods to remove sulfate such as membrane processing and chemical precipitation using barium salts. However, membrane separation is unable to achieve the required purity while chemical precipitation often causes secondary contamination with barium and requires extra filtration processes that lead to increased processing costs. In this study, we developed a polymeric matrix entrapped with barium ions as a novel adsorbent to selectively adsorb sulfate in aqueous solutions. The adsorbent was prepared by dropwise injection method where alginate droplets were crosslinked with barium to form hydrogel microcapsules. In a typical scenario, the microcapsules had a diameter of 3 mm and contained 5 wt-% alginate. The microcapsules could successfully reduce sulfate concentration in a solution from 100 to 16 mg·L , exceeding the removal target. However, the microcapsules were mechanically unstable in the presence of an excess amount of sulfate. Hence, calcium ions were added as a secondary crosslinking agent to improve the integrity of the microcapsules. The two-step Ca/Ba@alginate microcapsules showed an exceptional adsorption performance, reducing the sulfate concentration to as low as 0.02 mg·L . Since the sulfate selective microcapsules can be easily removed from the aqueous system and do not result in secondary barium contamination, these Ca/Ba@alginate adsorbents will find applications in ultra-refining of lithium in industry.

关键词: barium@alginate     microcapsules     dropwise injection     sulfate removal     lithium    

Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria

Hong’en QUAN, He BAI, Yang HAN, Yong KANG, Jiao SUN

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 177-184 doi: 10.1007/s11705-013-1324-7

摘要: The biosorption properties of dead sulfate reducing bacteria (SRB) for the removal of Cu(II) and Fe(III) from aqueous solutions was studied. The effects of the biosorbent concentration, the initial pH value and the temperature on the biosorption of Cu(II) and Fe(III) by the SRB were investigated. FTIR analysis verified that the hydroxyl, carbonyl and amine functional groups of the SRB biosorbent were involved in the biosorption process. For both Cu(II) and Fe(III), an increase in the SRB biosorbent concentration resulted in an increase in the removal percentage but a decrease in the amount of specific metal biosorption. The maximum specific metal biosorption was 93.25 mg?g at pH 4.5 for Cu(II) and 88.29 mg?g at pH 3.5 for Fe(III). The temperature did not have a significant effect on biosorption. In a binary metal system, the specific biosorption capacity for the target metal decreased when another metal ion was added. For both the single metal and binary metal systems, the biosorption of Cu(II) and Fe(III) onto a SRB biosorbent was better represented by a Langmuir model than by a Freundlich model.

关键词: sulfate reducing bacteria     biosorption     Cu(II)     Fe(III)    

Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR

Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1085-8

摘要: To enhance phosphorus removal and make the effluent meet the strict discharge level of total phosphorus (TP, 0.5 mg/L), flocculant dosing is frequently applied. In this study, the performance of aluminum sulfate dosing in a University of Cape Town Membrane Bioreactor (UCT-MBR) was investigated, in terms of the nutrients removal performance, sludge characteristics and membrane fouling. The results indicated that the addition of aluminum sulfate into the aerobic reactor continuously had significantly enhanced phosphorus removal. Moreover, COD, NH -N and TN removal were not affected and effluent all met the first level A criteria of GB18918-2002. In addition, the addition of aluminum sulfate had improved the sludge activity slightly and reduced trans-membrane pressure (TMP) increase rate from 1.13 KPa/d to 0.57 KPa/d effectively. The membrane fouling was alleviated attributed to the increased average particle sizes and the decreased accumulation of the small sludge particles on membrane surface. Furthermore, the decline of extracellular polymeric substance (EPS) concentration in mixed sludge liquid decreased its accumulation on membrane surface, resulting in the mitigation of membrane fouling directly.

关键词: University of Cape Town Bioreactor (UCT-MBR)     enhanced nutrients removal     aluminum sulfate     sludge activity     membrane fouling    

Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor

Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1073-4

摘要:

An-RBC reactor is highly suited to treat metallic wastewater.

Metal removal is due to sulfide precipitation via sulfate reduction by SRB.

Cu(II) removal was the best among the different heavy metals.

Maximum metal removal is achieved at low metal loading condition.

Metal removal matched well with the solubility product values of respective metal sulfide salts.

关键词: Factorial design analysis     sulfate reducing bacteria     multi-metal solution     heavy metal removal     anaerobic rotating biological contactor reactor     high metal loading.    

Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 460-469 doi: 10.1007/s11705-022-2224-5

摘要: Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment. Advanced persulfate oxidation technology is a workable and effective choice for wet flue gas denitrification due to its high efficiency and green advantages. However, NO absorption rate is limited and affected by mass transfer limitation of NO and aqueous persulfate in traditional reactors. In this study, a rotating packed bed (RPB) was employed as a gas–liquid absorption device to elevate the NO removal efficiency (ηNO) by aqueous persulfate ((NH4)2S2O8) activated by ferrous ethylenediaminetetraacetate (Fe2+-EDTA). The experimental results regarding the NO absorption were obtained by investigating the effect of various operating parameters on the removal efficiency of NO in RPB. Increasing the concentration of (NH4)2S2O8 and liquid–gas ratio could promoted the oxidation and absorption of NO while the ηNO decreased with the increase of the gas flow and NO concentration. In addition, improving the high gravity factor increased the ηNO and the total volumetric mass transfer coefficient (KGα) which raise the ηNO up to more than 75% under the investigated system. These observations proved that the RPB can enhance the gas–liquid mass transfer process in NO absorption. The correlation formula between KGα and the influencing factors was determined by regression calculation, which is used to guide the industrial scale-up application of the system in NO removal. The presence of O2 also had a negative effect on the NO removal process and through electron spin resonance spectrometer detection and product analysis, it was revealed that Fe2+-EDTA activated (NH4)2S2O8 to produce •SO4, •OH and •O2, played a leading role in the oxidation of NO, to produce NO3 as the final product. The obtained results demonstrated a good applicable potential of RPB/PS/Fe2+-EDTA in the removal of NO from flue gases.

关键词: rotating packed bed     Fe2+-EDTA     sulfate radical     hydroxyl radical     NO removal efficiency    

Effects of natural zeolite and sulfate ions on the mechanical properties and microstructure of plastic

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 86-98 doi: 10.1007/s11709-021-0793-x

摘要: One of the strategic materials used in earth-fill embankment dams and in modifying and preventing groundwater flow is plastic concrete (PlC). PlC is comprised of aggregates, water, cement, and bentonite. Natural zeolite (NZ) is a relatively abundant mineral resource and in this research, the microstructure, unconfined strength, triaxial behavior, and permeability of PlC made with 0%, 10%, 15%, 20%, and 25% replacement of cement by NZ were studied. Specimens of PIC-NZ were subjected to confined conditions and three different confining pressures of 200, 350, and 500 kPa were used to investigate their mechanical behavior and permeability. To study the effect of sulfate ions on the properties of PlC-NZ specimens, the specimens were cured in one of two different environments: normal condition and in the presence of sulfate ions. Results showed that increasing the zeolite content decreases the unconfined strength, elastic modulus, and peak strength of PlC-NZ specimens at the early ages of curing. However, at the later ages, increasing the zeolite content increases unconfined strength as well as the peak strength and elastic modulus. Specimens cured in the presence of sulfate ions indicated lower permeability, higher unconfined strength, elastic modulus, and peak strength due to having lower porosity.

关键词: plastic concrete     sulfate resistance     natural zeolite     triaxial compression test     SEM     permeability    

Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NO

Biwu CHU, Jiming HAO, Junhua LI, Hideto TAKEKAWA, Kun WANG, Jingkun JIANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 1-9 doi: 10.1007/s11783-012-0476-x

摘要: Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO ) and zinc sulfate (ZnSO ), on the photochemical reactions of a toluene/NO photooxidation system in a 2 m smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NO conversion and the formation of ozone and SOA. MnSO and ZnSO seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO and ZnSO seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

关键词: manganese sulfate     zinc sulfate     seed aerosols     toluene photooxidation     secondary organic aerosol    

A time−space porosity computational model for concrete under sulfate attack

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0985-7

摘要: The deterioration of the microscopic pore structure of concrete under external sulfate attack (ESA) is a primary cause of degradation. Nevertheless, little effort has been invested in exploring the temporal and spatial development of the porosity of concrete under ESA. This study proposes a mechanical–chemical model to simulate the spatiotemporal distribution of the porosity. A relationship between the corrosion damage and amount of ettringite is proposed based on the theory of volume expansion. In addition, the expansion strain at the macro-scale is obtained using a stress analysis model of composite concentric sphere elements and the micromechanical mean-field approach. Finally, considering the influence of corrosion damage and cement hydration on the diffusion of sulfate ions, the expansion deformation and porosity space−time distribution are obtained using the finite difference method. The results demonstrate that the expansion strains calculated using the suggested model agree well with previously reported experimental results. Moreover, the tricalcium aluminate concentration, initial elastic modulus of cement paste, corrosion damage, and continuous hydration of cement significantly affect concrete under ESA. The proposed model can forecast and assess the porosity of concrete covers and provide a credible approach for determining the residual life of concrete structures under ESA.

关键词: expansion deformation     porosity     internal expansion stress     external sulfate attack     mechanical–chemical coupling model    

Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from

Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1213-5

摘要: • Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction. • Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6-12. • Mn0 can activate persulfate to form hydroxyl and sulfate radicals. • Oxidation-induced precipitation and surface complexation contribute to Tl removal. • Combined Mn0-oxidants process is promising in the environmental field. Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82−), hypochlorite (ClO−), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82− or Mn0-ClO− system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82− oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82− system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82−/ClO− is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.

关键词: Nano zero-valent manganese     Thallium     Adsorption     Oxidation     Sulfate radical     Hydroxyl radical    

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1217-1

摘要: The SRAO phenomena tended to occur only under certain conditions. High amount of biomass and non-anaerobic condition is requirement for SRAO. Anammox bacteria cannot oxidize ammonium with sulfate as electron acceptor. AOB and AnAOB are mainly responsible for ammonium conversion. Heterotrophic sulfate reduction mainly contributed to sulfate conversion. For over two decades, sulfate reduction with ammonium oxidation (SRAO) had been reported from laboratory experiments. SRAO was considered an autotrophic process mediated by anammox bacteria, in which ammonium as electron donor was oxidized by the electron acceptor sulfate. This process had been attributed to observed transformations of nitrogenous and sulfurous compounds in natural environments. Results obtained differed largely for the conversion mole ratios (ammonium/sulfate), and even the intermediate and final products of sulfate reduction. Thus, the hypothesis of biological conversion pathways of ammonium and sulfate in anammox consortia is implausible. In this study, continuous reactor experiments (with working volume of 3.8L) and batch tests were conducted under normal anaerobic (0.2≤DO<0.5 mg/L) / strict anaerobic (DO<0.2 mg/L) conditions with different biomass proportions to verify the SRAO phenomena and identify possible pathways behind substrate conversion. Key findings were that SRAO occurred only in cases of high amounts of inoculant biomass under normal anaerobic condition, while absent under strict anaerobic conditions for same anammox consortia. Mass balance and stoichiometry were checked based on experimental results and the thermodynamics proposed by previous studies were critically discussed. Thus anammox bacteria do not possess the ability to oxidize ammonium with sulfate as electron acceptor and the assumed SRAO could, in fact, be a combination of aerobic ammonium oxidation, anammox and heterotrophic sulfate reduction processes.

关键词: Anammox bacteria     Autotrophic     Biological conversion     Sulfate reducing ammonium oxidation (SRAO)    

The solubility of cefquinome sulfate in pure and mixed solvents

Rongbao Qi,Jingkang Wang,Junxiao Ye,Hongxun Hao,Ying Bao

《化学科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 245-254 doi: 10.1007/s11705-016-1569-z

摘要: Solid-liquid equilibrium data of cefquinome sulfate is important to develop industrial crystallization processes for cefquinome sulfate. The solubilities of cefquinome sulfate in five pure solvents (methanol, ethanol, ethylene glycol, acetic acid and water) from 277.15 to 305.15 K and in a binary acetone-water solvent from 278.15 to 293.15 K were measured at atmospheric pressure. The pure-solvent solubility data was correlated to the modified Apelblat and Van’t Hoff equations whereas the mixed-solvent system data was correlated to the modified Apelblat, Van’t Hoff, CNIBS/R-K and Jouyban-Acree models. It was found that the solubilities of cefquinome sulfate in all tested solvents decreased with the increasing of temperature. In addition, the thermodynamic properties of the dissolution processes, including standard Gibbs free energy, enthalpy and entropy changes, were calculated using the Van’t Hoff equation. It was found that the dissolution of cefquinome sulfate is exothermic.

关键词: cefquinome sulfate     solubility     thermodynamic properties    

Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method

Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 545-553 doi: 10.1007/s11705-017-1665-8

摘要: The effects of Na , Mg , Al and Fe ion concentrations on the crystal morphology of calcium sulfate hemihydrate whiskers formed via a hydrothermal method have been studied. In the presence of Al concentrations higher than 1×10 mol/L the whiskers were significantly shorter and thicker and the presence of Mg and Fe resulted in shorter whiskers. The presence of Na did not affect the morphology of the whiskers. Through elemental analysis, it was determined that Mg and Al were selectively adsorbed on the surfaces of the crystals, whereas Fe underwent a hydrolysis reaction to form a brown precipitate which decreased the ion concentration in the solution. These results indicate that in raw materials used for the industrial preparation of calcium sulfate whiskers, Al and Fe should be removed and the Mg concentration should be less than 8 × 10 mol/L in order to obtain pure whiskers with high aspect ratios.

关键词: metal ions     morphology     calcium sulfate hemihydrate whiskers     hydrothermal method     selective adsorption    

PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic

《环境科学与工程前沿(英文)》 doi: 10.1007/s11783-021-1481-8

摘要:

For comprehensive insights into the influences of sulfate on performance, microbial community and metabolic pathways in the acidification phase of a two-phase anaerobic system, a laboratory-scale acidogenic bioreactor was continuously operated to treat wastewater with elevated sulfate concentrations from 2000 to 14000 mg/L.

关键词: Acidogenic phase reactor     High-sulfate wastewater     Sulfate reduction     Acidogenic fermentation     PICRUSt2    

Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide

Xingfu SONG, Jingcai ZHAO, Yunzhao LI, Ze SUN, Jianguo YU

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 210-217 doi: 10.1007/s11705-013-1320-y

摘要: The decomposition mechanism of ammonium sulfate catalyzed by ferric oxide was investigated in this paper. The decomposition kinetics parameters were determined via a global optimization of the Kissinger iterative method using the non-isothermal thermogravimetric analysis data. The products and intermediates were synchronously characterized by X-ray diffraction and mass spectrometry. The obtained results indicate that the decomposition process of ammonium sulfate catalyzed by ferric oxide can be divided into four stages of which the activation energies are 123.64, 126.58, 178.77 and 216.99 kJ·mol respectively. The decomposition mechanisms at the first and the fourth stage both belong to Mample power theorem, the second stage belongs to Avrami-Erofeev equation and the third belongs to contracting sphere (volume) equation. The corresponding pre-exponential factors ( ) are calculated simultaneously.

关键词: ammonium sulfate     decomposition kinetics     ferric oxide     thermogravimetric analysis    

on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate

Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1090-y

摘要:

Less than 50 mg/L nitrobenzene brought little effect on anaerobic sulfate reduction.

Kinetics of sulfate reduction under different nitrobenzene contents was studied.

Increased nitrobenzene contents greatly changed the bacterial community structure.

Genus Desulfovibrio played the key role in anaerobic sulfate reduction process.

关键词: Nitrobenzene (NB)     Sulfate-reducing bacteria (SRB)     Bacterial community     Sulfate reduction     High-throughput sequencing    

标题 作者 时间 类型 操作

Development of barium@alginate adsorbents for sulfate removal in lithium refining

Lisa Xu, Kaifei Chen, George Q. Chen, Sandra E. Kentish, Gang (Kevin) Li

期刊论文

Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria

Hong’en QUAN, He BAI, Yang HAN, Yong KANG, Jiao SUN

期刊论文

Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR

Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang

期刊论文

Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor

Mothe Gopi Kiran, Kannan Pakshirajan, Gopal Das

期刊论文

Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate

期刊论文

Effects of natural zeolite and sulfate ions on the mechanical properties and microstructure of plastic

期刊论文

Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NO

Biwu CHU, Jiming HAO, Junhua LI, Hideto TAKEKAWA, Kun WANG, Jingkun JIANG

期刊论文

A time−space porosity computational model for concrete under sulfate attack

期刊论文

Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from

Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long

期刊论文

Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia

Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang

期刊论文

The solubility of cefquinome sulfate in pure and mixed solvents

Rongbao Qi,Jingkang Wang,Junxiao Ye,Hongxun Hao,Ying Bao

期刊论文

Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method

Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu

期刊论文

PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic

期刊论文

Thermal decomposition mechanism of ammonium sulfate catalyzed by ferric oxide

Xingfu SONG, Jingcai ZHAO, Yunzhao LI, Ze SUN, Jianguo YU

期刊论文

on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate

Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li

期刊论文